手术动作三胞胎识别提供了对手术场景的更好理解。这项任务具有很高的相关性,因为它为外科医生提供了背景感知的支持和安全性。当前改善绩效的首选策略是开发新的网络机制。但是,当前最新技术的性能大大低于其他手术任务。为什么会发生这种情况?这是我们在这项工作中解决的问题。我们提出了第一项研究,以了解现有的深度学习模型通过稳健性和解释的镜头的失败。首先,我们通过对抗优化方案研究了当前的现有模型。然后,我们通过基于功能的解释提供故障模式。我们的研究对提高性能和提高可靠性的关键是核心和虚假属性。我们的工作为外科科学中更具可信赖性和可靠性的深度学习模型打开了大门。
translated by 谷歌翻译
从生物力学的角度来看,秋千臂在通过更大的角动量控制空间通过更大的角动量控制空间来促进两体机器人的高度动态运动方面具有不可替代的作用。由于缺乏适当的运动控制策略,很少有双足机器人使用摇摆臂及其多个自由度的冗余特征来完美整合建模和控制。本文通过将两足机器人建模为飞轮弹簧载倒摆(F-SLIP)来提取挥杆臂的特征并使用全身控制器(WBC)来实现这些特征,并提出了建议,并提出了建议,也建议您提出,则本文提出了一种控制策略。一个评估系统,包括美国定义的敏捷性的三个方面,双皮亚机器人高度动态运动的稳定性和能耗。我们设计了几组仿真实验,并根据评估系统的紫色运动(东方紫能量上升)V1.0分析了摇臂的效果,这是一种旨在测试高爆炸性运动的两足机器人。结果表明,紫色的敏捷性增加了10%以上,稳定时间减少了两倍,并且引入挥杆臂后,能源消耗降低了20%以上。
translated by 谷歌翻译
医疗图像注册和细分是多种临床程序的关键任务。这些任务的手动实现是耗时的,质量高度取决于医师的专业水平。为了减轻这项费力的任务,已经开发了自动工具,其中大多数解决方案都是有监督的技术。但是,在医疗领域中,拥有代表性的基础真理的强有力假设远非现实。为了克服这一挑战,已经研究了无监督的技术。但是,它们的性能仍然有限,并且无法产生合理的结果。在这项工作中,我们提出了一个新型的统一的无监督框架,用于图像注册和分割,我们称为PC-Swinmorph。我们框架的核心是两种基于补丁的策略,我们证明补丁表示是性能增益的关键。我们首先引入了基于补丁的对比策略,该策略可执行当地条件和更丰富的特征表示。其次,我们利用一个3D窗口/移动的窗口多头自发项模块作为补丁缝制策略,以消除贴片分裂中的人工制品。我们通过一组数值和视觉结果证明,我们的技术优于当前最新的无监督技术。
translated by 谷歌翻译
医疗图像分割是一项相关任务,因为它是多个诊断过程的第一步,因此在临床使用中是必不可少的。尽管已经使用监督技术报告了重大成功,但他们假设一套具有良好代表性的标签集。这是在医学领域中的一个有力的假设,在医学领域,注释昂贵,耗时且人类偏见固有。为了解决这个问题,文献中已经提出了无监督的技术,但由于学习任何转换模式的困难,它仍然是一个开放的问题。在这项工作中,我们介绍了一个新型的优化模型,构成了一个新的基于CNN的对比登记结构,用于无监督的医学图像分割。我们方法的核心是从对比度学习机制中利用图像级注册和特征级别,以执行基于注册的细分。首先,我们提出了一个体系结构,以通过注册进行无监督的医学图像分割来捕获图像到图像转换模式。其次,我们将一种对比的学习机制嵌入了注册体系结构中,以增强网络在功能级别中的区分能力。我们表明,我们提出的技术减轻了现有无监督技术的主要缺点。我们通过数值和视觉实验证明,我们的技术在两个主要的医疗图像数据集上的当前无监督分割方法显着优于当前的最新无监督分割方法。
translated by 谷歌翻译
从各种平台收获的结构点处理数据对机器学习界产生了新的挑战。通过施加矩阵结构以重复观察标记点过程,我们提出了一种新的混合模型的多级标记点过程,用于识别观察到的数据中的潜在异质性。具体地,我们研究了一个矩阵,其条目被标记为Log-Gaussian Cox进程和这种矩阵的簇行。提出了一种有效的半参数期预期 - 解决方案与点流程的功能主成分分析(FPCA)进行了模型估计。通过仿真研究和实际数据分析证明了所提出的框架的有效性。
translated by 谷歌翻译
In this paper, we propose a robust 3D detector, named Cross Modal Transformer (CMT), for end-to-end 3D multi-modal detection. Without explicit view transformation, CMT takes the image and point clouds tokens as inputs and directly outputs accurate 3D bounding boxes. The spatial alignment of multi-modal tokens is performed implicitly, by encoding the 3D points into multi-modal features. The core design of CMT is quite simple while its performance is impressive. CMT obtains 73.0% NDS on nuScenes benchmark. Moreover, CMT has a strong robustness even if the LiDAR is missing. Code will be released at https://github.com/junjie18/CMT.
translated by 谷歌翻译
Dataset distillation has emerged as a prominent technique to improve data efficiency when training machine learning models. It encapsulates the knowledge from a large dataset into a smaller synthetic dataset. A model trained on this smaller distilled dataset can attain comparable performance to a model trained on the original training dataset. However, the existing dataset distillation techniques mainly aim at achieving the best trade-off between resource usage efficiency and model utility. The security risks stemming from them have not been explored. This study performs the first backdoor attack against the models trained on the data distilled by dataset distillation models in the image domain. Concretely, we inject triggers into the synthetic data during the distillation procedure rather than during the model training stage, where all previous attacks are performed. We propose two types of backdoor attacks, namely NAIVEATTACK and DOORPING. NAIVEATTACK simply adds triggers to the raw data at the initial distillation phase, while DOORPING iteratively updates the triggers during the entire distillation procedure. We conduct extensive evaluations on multiple datasets, architectures, and dataset distillation techniques. Empirical evaluation shows that NAIVEATTACK achieves decent attack success rate (ASR) scores in some cases, while DOORPING reaches higher ASR scores (close to 1.0) in all cases. Furthermore, we conduct a comprehensive ablation study to analyze the factors that may affect the attack performance. Finally, we evaluate multiple defense mechanisms against our backdoor attacks and show that our attacks can practically circumvent these defense mechanisms.
translated by 谷歌翻译
Few Shot Instance Segmentation (FSIS) requires models to detect and segment novel classes with limited several support examples. In this work, we explore a simple yet unified solution for FSIS as well as its incremental variants, and introduce a new framework named Reference Twice (RefT) to fully explore the relationship between support/query features based on a Transformer-like framework. Our key insights are two folds: Firstly, with the aid of support masks, we can generate dynamic class centers more appropriately to re-weight query features. Secondly, we find that support object queries have already encoded key factors after base training. In this way, the query features can be enhanced twice from two aspects, i.e., feature-level and instance-level. In particular, we firstly design a mask-based dynamic weighting module to enhance support features and then propose to link object queries for better calibration via cross-attention. After the above steps, the novel classes can be improved significantly over our strong baseline. Additionally, our new framework can be easily extended to incremental FSIS with minor modification. When benchmarking results on the COCO dataset for FSIS, gFSIS, and iFSIS settings, our method achieves a competitive performance compared to existing approaches across different shots, e.g., we boost nAP by noticeable +8.2/+9.4 over the current state-of-the-art FSIS method for 10/30-shot. We further demonstrate the superiority of our approach on Few Shot Object Detection. Code and model will be available.
translated by 谷歌翻译
This paper focuses on designing efficient models with low parameters and FLOPs for dense predictions. Even though CNN-based lightweight methods have achieved stunning results after years of research, trading-off model accuracy and constrained resources still need further improvements. This work rethinks the essential unity of efficient Inverted Residual Block in MobileNetv2 and effective Transformer in ViT, inductively abstracting a general concept of Meta-Mobile Block, and we argue that the specific instantiation is very important to model performance though sharing the same framework. Motivated by this phenomenon, we deduce a simple yet efficient modern \textbf{I}nverted \textbf{R}esidual \textbf{M}obile \textbf{B}lock (iRMB) for mobile applications, which absorbs CNN-like efficiency to model short-distance dependency and Transformer-like dynamic modeling capability to learn long-distance interactions. Furthermore, we design a ResNet-like 4-phase \textbf{E}fficient \textbf{MO}del (EMO) based only on a series of iRMBs for dense applications. Massive experiments on ImageNet-1K, COCO2017, and ADE20K benchmarks demonstrate the superiority of our EMO over state-of-the-art methods, \eg, our EMO-1M/2M/5M achieve 71.5, 75.1, and 78.4 Top-1 that surpass \textbf{SoTA} CNN-/Transformer-based models, while trading-off the model accuracy and efficiency well.
translated by 谷歌翻译
Benefiting from the intrinsic supervision information exploitation capability, contrastive learning has achieved promising performance in the field of deep graph clustering recently. However, we observe that two drawbacks of the positive and negative sample construction mechanisms limit the performance of existing algorithms from further improvement. 1) The quality of positive samples heavily depends on the carefully designed data augmentations, while inappropriate data augmentations would easily lead to the semantic drift and indiscriminative positive samples. 2) The constructed negative samples are not reliable for ignoring important clustering information. To solve these problems, we propose a Cluster-guided Contrastive deep Graph Clustering network (CCGC) by mining the intrinsic supervision information in the high-confidence clustering results. Specifically, instead of conducting complex node or edge perturbation, we construct two views of the graph by designing special Siamese encoders whose weights are not shared between the sibling sub-networks. Then, guided by the high-confidence clustering information, we carefully select and construct the positive samples from the same high-confidence cluster in two views. Moreover, to construct semantic meaningful negative sample pairs, we regard the centers of different high-confidence clusters as negative samples, thus improving the discriminative capability and reliability of the constructed sample pairs. Lastly, we design an objective function to pull close the samples from the same cluster while pushing away those from other clusters by maximizing and minimizing the cross-view cosine similarity between positive and negative samples. Extensive experimental results on six datasets demonstrate the effectiveness of CCGC compared with the existing state-of-the-art algorithms.
translated by 谷歌翻译